
UNDER REVIEW

R E S C I E N C E C
Replication / ML Reproducibility Challenge 2022

[Re] Improve Single-Point Zeroth-Order Optimization
Using High-Pass and Low-Pass Filters

Anonymous1, ID
1Anonymous Institution

Edited by
—

Reviewed by
—

Received
—

Published
—

DOI
—

Reproducibility Summary

Scope of Reproducibility — In this paper, the authors propose a single‐point zeroth‐order
optimization (SZO) algorithm called High/Low‐pass Filter SZO (HLF‐SZO), which they
claim achieves (i) smaller variance compared to vanilla SZO, (ii) faster convergence com‐
pared to vanilla SZO and residual‐feedback SZO, and (iii) comparable empirical perfor‐
mance to two‐point ZO. The authors support (ii) by showing that HLF‐SZO gives a better
theoretical iteration complexity than vanilla SZO and residual‐feedback SZO. Numerical
experiments corroborate all claims on various synthetic convex/nonconvex problems.

Methodology —We reproduce two figures from the numerical experiments section of the
paper to verify the aforementioned claims on several optimization problems. The au‐
thors do not provide any code, so all aspects of the reproduction (e.g., algorithms, figure
generation) had to be done by interpreting the methods outlined in the paper. We also
extend the results of the paper by evaluatingHLF‐SZO on the highly nonconvex problem
of training a two‐layer neural network. Additionally, we compare HLF‐SZO to an SZO
method derived from higher order filters using a similar approach to that in the paper.
All code could be run on a laptop without GPU. Finally, we flesh out proof details of the
convergence result for convex problems.

Results — For the figures selected, wewere able to replicate the results almost identically,
with little to no discernible visual differences between the original and reproduced fig‐
ures. In particular, we verify the authors’ claims that HLF‐SZO converges in fewer it‐
erations with less variance compared to vanilla SZO, converges quicker than residual‐
feedback SZO, yet is slightly slower than, yet comparable to, two‐point ZO.

What was easy — Even though no code was provided, it was fairly easy to reimplement the
algorithms as described in the paper due to their simplicity and brevity.

What was difficult — There was some initial confusion about what was being plotted in the
figures due to overloaded notation in the body of the experimental section.

Communication with original authors —We contacted the original authors regarding details
about the manual search procedure for hyperparameters of the method, to which they
responded satisfactorily.

Copyright © 2023 Anonymous, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to ()
The authors have declared that no competing interests exists.

ReScience C 9.2 – Anonymous 2023 1

https://orcid.org/0000-0000-0000-0000
https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

1 Introduction

This paper [1] considers solving a generic unconstrained optimization problem

min
x∈Rd

f(x).

In applications such as black‐box optimization and control theory, the derivatives of f
maynot be available or expensive to compute, so only the value of the function at certain
points is known. This motivates the use of zeroth‐order optimization (ZO) methods that
do not utilize any derivatives of f . In certain applications such as online optimization
and reinforcement learning, we may only be able to query f once per time step, which
gives rise to single‐point zeroth‐order optimization (SZO) methods that only evaluate f
once per iteration.

Using ideas from extremum seeking dynamics and control theory, the authors propose
a SZOmethod called High/Low‐pass Filter SZO (HLF‐SZO), which they claim attains bet‐
ter performance on both convex and nonconvex problems compared to other SZOmeth‐
ods such as vanilla SZO [2] and residual SZO [3], while achieving similar performance to
multi‐point methods such as two‐point ZO [4]. Due to the lack of publicly available code,
we aim to reproduce experimental results from the paper using our own implementa‐
tions of themethods to verify the claims by the authors, which are stated in detail in the
scope of reproducibility below.

2 Scope of reproducibility

Themain theoretical claimmade in the paper is that HLF‐SZO achieves a better iteration
complexity compared to other SZO methods. More specifically, for minimizing a con‐
vex function with domain Rd to an optimality gap of ϵ, HLF‐SZO admits a O(d3/2/ϵ3/2)
iteration complexity, which is an improvement on the O(d2/ϵ3) iteration complexity of
vanilla SZO and the O(d3/ϵ3/2) iteration complexity of residual SZO, albeit worse than
the O(d/ϵ) complexity of two‐point ZO.

In this report, we focus on reproducing both the theoretical results and numerical ex‐
periments that imply a “ranking” of the algorithms. In particular, we verify

(Claim 1) HLF‐SZOhas smaller variance and faster convergence compared to vanilla
SZO for convex problems (logistic regression) (Figure 2 and Theorem 4.2 in origi‐
nal paper).

(Claim 2) HLF‐SZO achieves faster convergence compared to residual SZO for con‐
vex problems (logistic regression, ridge regression) andnonconvexproblems (Beale
function) (Figure 4 and Theorem 4.2 in original paper).

(Claim 3) HLF‐SZO achieves comparable (yet slightly slower) convergence to two‐
point ZO for convex problems (logistic regression, ridge regression) and noncon‐
vex problems (Beale function) (Figure 4 in original paper).

Figures 3, 5 and Theorem 4.3 from the original paper are not reproduced in this report.

3 Methodology

Since the authors did not make their code publicly available, we implemented each al‐
gorithm as well as the figure generation code from their descriptions in the paper. We
ran all code in a Google Colab notebook in Python, and since the problem sizes were
relatively small, the code ran quickly on a laptop CPU.

ReScience C 9.2 – Anonymous 2023 2

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

3.1 Model descriptions
We describe all ZO algorithms that are discussed in the paper. In each of the methods,
f is the function to be optimized.

Vanilla SZO. We repeatedly update xk ∈ Rd for k ≥ 1 as

xk+1 = xk − η · d
r
f(xk + ruk)uk (1)

where uk are i.i.d. uniformly sampled from the d − 1 dimensional unit sphere, η is the
step size, and r > 0 is the smoothing radius.

Two‐point ZO. We repeatedly update xk ∈ Rd for k ≥ 1 as

xk+1 = xk − η
d

2r
(f(xk + ruk)− f(xk − ruk))uk. (2)

All parameters are identical to those from Vanilla SZO.

The paper’s innovation involves interpreting vanilla SZO as a discrete extremum seeking
(ES) control problem and integrating either a high‐pass filter (giving HF‐SZO), low‐pass
filter (giving LF‐SZO), or both (giving HLF‐SZO).

HF‐SZO. We repeatedly update xk ∈ Rd for k ≥ 1 as

zk = (1− β)zk−1 + f(xk + ruk)− f(xk−1 + ruk−1)

xk+1 = xk − η · d
r
zkuk

(3)

where zk is an intermediate scalar variable, β ∈ (0, 2) is a parameter controlling the
scaling of zk; all other parameters are identical to those of the previous methods. We
initialize z0 = 0. We note that for implementation, we save the previous evaluation of f
to query f only once per iteration.

Residual SZO. Residual SZO is equivalent to HF‐SZO with β = 1.

LF‐SZO. We repeatedly update xk ∈ Rd for k ≥ 1 as

xk+1 = xk − η
d

r
f(xk + ruk)uk + α(xk − xk−1) (4)

where α ∈ [0, 1) is a momentum term; all other parameters are identical to those of the
previous methods..

HLF‐SZO. We repeatedly update xk ∈ Rd for k ≥ 1 as

zk = (1− β)zk−1 + f(xk + ruk)− f(xk−1 + ruk−1)

xk+1 = xk − η · d
r
zkuk + α(xk − xk−1).

(5)

which is precisely the combination of HF‐SZO and LF‐SZO.

3.2 Datasets
All experiments reproduced from the original paper utilize simulated data to formulate
each optimization problem ‐ here we outline they are generated.

ReScience C 9.2 – Anonymous 2023 3

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

Logistic Regression (Figures 2 & 4, Extension 2). We generate N many observations
{Ai}Ni=1 ⊂ Rd where the entries of Ai are drawn i.i.d. from U(−1, 1). Labels {yi}Ni=1

are generated as yi = sign(A⊤
i x∗ + ϵi) where x∗ = 0.5 · 1d is the ground truth and

ϵi ∼ U(−0.5, 0.5) is some label noise. For Figure 2 and extension 2 we use d = 2 and
N = 200, whereas for Figure 4 we use d = 50 and N = 1000.

Ridge Regression (Figure 4). We sample entries of a matrix H ∈ R1000×50 i.i.d. from
N (0, 1), and b = Hx∗ + ϵ where x∗ = 0.5 · 150 and ϵ ∼ N (0, 0.1 I50).

Circles (Extension 1). We construct a simple non‐linear dataset (see Figure 3a) with 2
classes and N = 500 samples in total (250 samples for each class). Each sample ai ∈ R2

represents a point on the circle of radius 3 or 5 for class −1 and 1, respectively.

MNIST (Extension 1). We sample 400 examples of the 0 and 1 digits respectively from
the MNIST [5] dataset (see Figure 3b), which is sourced from the PyTorch [6] module
torchvision.datasets.

3.3 Hyperparameters
The hyperparameters for allmethods include the step size η, and the smoothing radius r
for all zeroth order methods. For the high‐pass/lower‐pass filter methods, we also have
the momentum term α and the residual term β. The authors of the paper claim they
“manually optimize” the step size η to achieve the “fastest convergence” for each of the
methods, which the authors clarified was done by gradually increasing the step size un‐
til the method diverged. The authors also stated that the radius r was manually chosen
to be stable (i.e., no numerical or precision errors) but otherwise had little impact on
the empirical performance. The momentum term α is set to 0.9 in all experiments and
extensions, which the authors justify is a common setting in the literature. The residual
term β is set to 1 in all experiments and extensions, which is theoretically optimal based
on the convergence analysis presented in the paper. The radius r is set to be 0.1 for all
reproductions and extensions (except for the Beale function problem, where r = 0.01).
We report the step sizes chosen for each experiment and method in Table 1. For exten‐
sion 1, we select the step size via grid search over 10 log‐spaced values between 10−4

and 5 for each method, choosing the step size with fastest convergence. For extension
2, we use the same step size for HF‐SZO as in the Figure 2 reproduction, whereas we
manually tune the 2nd order HF‐SZO method to achieve the fastest convergence (i.e.,
same procedure as the authors) for fair comparison.

Vanilla LF HF HLF Residual Two‐Point GD 2nd Order HF
Logistic Regression (Fig. 2) 5× 10−4 5× 10−5 0.3 0.05 − − − −
Logistic Regression (Fig. 4a) − − − 1.5× 10−2 4.5× 10−2 0.7 − −
Ridge Regression (Fig. 4b) − − − 10−6 2.4× 10−6 2× 10−5 − −
Beale Function (Fig. 4c) − − − 10−6 2.4× 10−6 2× 10−5 − −

Circles (Ext. 1) − − − 5× 10−3 5× 10−2 0.1 0.5 −
MNIST (Ext. 1) − − − 10−4 10−4 0.01 1 −

Logistic Regression (Ext. 2) − − 0.3 − − − − 0.6

Table 1. Step size η for each combination of experimental set‐up and method.

3.4 Experimental setup and code
Reproducing Figure 2. We solve the logistic regression problem

min
x∈Rd

f(x) :=
1

N

N∑
i=1

log(1 + exp(−yiA
⊤
i x))

ReScience C 9.2 – Anonymous 2023 4

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

using the data described in Section 3.2. We apply the vanilla SZO, LF‐SZO, HF‐SZO, and
HLF‐SZOmethods, initializing with x0 = 0. To compute the optimality gap f(xk)−f(x∗)
at each iteration, we calculate the optimal solution x∗ of f via second‐order BFGS using
the Python package scipy.optimize ‐ we note that the authors did not specify how
x∗ is computed in their results. For eachmethod, 200 trials are performed and themean
of the optimality gap f(xk)−f(x∗) is plotted along with a 80% confidence interval to ob‐
serve variance. We run 105 iterations for vanilla SZO and LF‐SZO since they are slower
to converge, whereas we only run 500 iterations for HF‐SZO and HLF‐SZO.

Reproducing Figure 4. We apply residual SZO, HLF‐SZO, and two‐point ZO methods,
initializing with x0 = 0. For each method, 200 trials are performed and the mean of
the optimality gap f(xk) − f(x∗) is plotted on a log scale along with a 80% confidence
interval to observe variance. We run 5000 iterations of each method. For the first panel,
we solve the same logistic regression problem as for Figure 2 with slightly different data
as described in Section 3.2. For the second panel, we solve the ridge regression problem

min
x∈Rd

f(x) :=
1

2
∥b−Hx∥22 +

c

2
∥x∥22

using the data described in Section 3.2. For the third panel, we minimize the Beale
function given by

min
x∈R2

f(x) := (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2

which is a nonconvex function with global minimum at x∗ = (3, 0.5)⊤.

Extension 1. We train a 2‐layer neural network using logistic loss, namely we solve

min
θ

f(θ) :=
1

N

N∑
i=1

log(1 + exp(−yihθ(ai)))

where hθ(a) = W2σ(W1a+b1)+b2 (σ is ReLU activation) and θ is a vectorized concatena‐
tion of all network weights {W1,W2, b1, b2}. We consider two different datasets: Circles
and MNIST, which are described in Section 3.2. For the former, we have input dimen‐
sion size 2 and hidden layer width 4, whereas for the latter we have input dimension
size 784 and hidden layer width 10. We apply gradient descent, residual SZO, HLF‐SZO,
and two‐point ZO methods, where network weights θ are initialized using the default
initializations for torch.nn.Linear layers in PyTorch.

Extension 2. We solve the same logistic regression problem as for Figure 2 and apply
HF‐SZO and second order HF‐SZO (derived in Appendix C), initializing with x0 = 0. For
each method, 200 trials are performed and the mean of the optimality gap f(xk)− f(x∗)
is plotted on a log scale along with a 80% confidence interval to observe variance. We
run 200 iterations of each method.

3.5 Computational requirements
All experiments were carried out using a Lenovo ThinkPad T14s Gen 3 with an AMD
Ryzen 6750u (8 core) processor and 32GB DDR5‐6000Mhz RAM. This is on Fedora 36
running Linux kernel 5.19. No GPUs were used for any experiments. The most time
consuming aspect of reproducing the experiments is running each method 200 times,
but generating all figures (including the extension) required less than an hour of com‐
putation time.

ReScience C 9.2 – Anonymous 2023 5

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

4 Results

Overall, we were able to reproduce both Figures 2 and 4 of the original paper with al‐
most no visual discernible differences. Since these figures tend to support the 3 claims
outlined in our scope of reproducibility, our findings also back these claims. On the
other hand, our extension experiment implies that on slightly more “difficult” noncon‐
vex problems, the faster convergence of HLF‐SZO compared to residual SZOmay not be
as pronounced as suggested by the experiments in the original paper.

4.1 Results reproducing original paper

Result 1 (Reproducing Figure 2) — In Figure 1, we replicate Figure 2 from the paper, which
compares the convergence speed and variance of different variations of the HLF‐SZO
algorithm, including strictly low‐pass or high‐pass variations, as well as the vanilla SZO
method for solving a logistic regression problem. Our results are in agreement with the
original figure shown in the paper. More specifically, we see that HLF‐SZO takes or‐
ders of magnitude less function queries (iterations) to converge to the global minimizer
compared to both Vanilla SZO, supporting claim 1. Moreover, observe that the variance
of HLF‐SZO (confidence interval) is a tighter region than the vanilla SZO, further sup‐
porting claim 1. This figure also functions somewhat as an ablation study, in the sense
that integrating both high‐pass and low‐pass components gives faster convergence and
lower variance than strictly using one or the other.

Result 2 (Reproducing Figure 4) — In Figure 2, we replicate Figure 4b from the paper, which
compares the convergence speed and variance ofHLF‐SZOwith established ZOmethods
such as residual SZO and two‐point ZO for the convex ridge regression problem. In
Appendix A, we also replicate Figures 4a and 4c with the samemethods for both convex
logistic regression and the nonconvex Beale function. Once again, our results are in
agreement with the original figure shown in the paper. More specifically, we see that
HLF‐SZO converges faster in fewer function queries across all problems compared to
residual SZO, supporting claim 2. Furthermore, HLF‐SZO has comparable convergence
speed to two‐point ZO (the x‐axis in these plots accounts for the fact that two‐point ZO
requires two function queries per iteration), supporting claim 3. In particular, for the
ridge regression case, the initial slope of the HLF‐SZO trace matches that of the two‐
point ZO trace.

Result 3 (Reproducing Theorem 4.2) — In Appendix B, we fill in gaps of the proof of Theorem
4.2, which specifically shows thatHLF‐SZO requiresO(d3/2/ϵ3/2) iterations to achieve an
expected optimality gap of ϵ for convex problems of dimension d, which is an improve‐
ment on the O(d2/ϵ3) iteration complexity of vanilla SZO and the O(d3/ϵ3/2) iteration
complexity of residual SZO. This result supports both claims 1 and 2.

4.2 Results beyond original paper

Additional Result 1 (Zeroth Order Neural Network Training) — In Theorem 4.3, the authors give a
convergence guarantee using the HLF‐SZOmethod for nonconvex problems, yet the nu‐
merical results focus mainly on convex problems. They provide some experiments on
the nonconvex Beale function as described in Section 3.4 of our report, but this is a rela‐
tively synthetic and low‐dimensional problem, so it is difficult to assess the method for
more realistic nonconvex problems of interest. To this end, we apply the various zeroth
order optimizationmethods discussed here to the highly difficult nonconvex problem of
optimizing a two‐layer neural network for two different datasets. We report all technical
details in Section 3.4. We plot the training loss vs. number of forward passes in Figure 3

ReScience C 9.2 – Anonymous 2023 6

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

for the Circles and MNIST datasets respectively. We observe in both figures that the
convergence speed of gradient descent is much faster compared with all other zeroth
order methods. On the other hand, the performance of HLF‐SZO is only slightly worse
than two‐point SZO, which supports claim 3. Interestingly, while HLF‐SZO performs
similarly to residual SZO on the Circles dataset, there is a large gap in performance for
the MNIST dataset, which supports claim 2.

(a) Original result

0 20000 40000 60000 80000 100000
Function Queries

0.0

0.1

0.2

0.3

f(x
)-f

(x
*)

Vanilla SZO
80% CI

0 20000 40000 60000 80000 100000
Function Queries

0.0

0.1

0.2

0.3

f(x
)-f

(x
*)

LF SZO
80% CI

0 100 200 300 400 500
Function Queries

0.0

0.1

0.2

0.3

f(x
)-f

(x
*)

HF SZO
80% CI

0 100 200 300 400 500
Function Queries

0.0

0.1

0.2

0.3

f(x
)-f

(x
*)

HLF SZO
80% CI

(b) Our result

Figure 1. The convergence results of various SZO methods on the logistic regression problem.

(a) Original result

0 1000 2000 3000 4000 5000
Function Queries

4

2

0

2

4

6

lo
g(

f(x
)-f

(x
*)

)

Ridge Regression in Case 2b)
Residual
HLF-SZO
Two-Point

80% CI Residual
80% CI HLF
80% CI Two Point

(b) Our result

Figure 2. The convergence results of various SZO methods on the ridge regression problem.

0 1000 2000 3000 4000 5000
of forward passes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Logistic Regression on Neural Network
Gradient Descent
HLF-SZO
Two-Point
Residual

4 2 0 2 4
x1

4

2

0

2

4

x 2

Class -1
Class 1

(a) Circles dataset (blue and red classes shown above).

0 250 500 750 1000 1250 1500 1750 2000
of forward passes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Logistic Regression on Neural Network
Gradient Descent
HLF-SZO
Two-Point
Residual

(b)MNIST dataset (digit classes shown above).

Figure 3. Convergence results of GD and various SZO methods for a two‐layer neural network.

ReScience C 9.2 – Anonymous 2023 7

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

Additional Result 2 (Higher Order Filters) — The authors of the paper derive HLF‐SZO by ap‐
plying first order low and high‐pass filters to the continuous‐time dynamics of vanilla
SZO. A natural question to ask is: can we apply higher order filters to yield the same benefits?
Here we derive a new second order HLF‐SZO method from second order high pass and
low pass filters and compare to the original HLF‐SZO method. The equation below is
the result of our derivation shown in Appendix C.

zk =
1

1 + 2β
((2 + 2β)zk−1 − (1 + β2)zk−2 + f(xk + ruk)

+ f(xk−2 + ruk−2)− 2f(xk−1 + ruk−1))

xk+1 = xk − η
d

r
zkuk

In Figure 4a, we illustrate the block diagram for the second order HLF‐SZO ‐ we derive
the exact method in Appendix C. In Figure 4b, we compare the second order HF‐SZO to
the original (first order) HF‐SZO method on the same logistic regression problem from
Figure 1. We only consider the high pass component since it yielded most of benefit
in Figure 1. We see that the second order HF SZO performs very similarly (with almost
identical variance) compared to the first order HF SZO, albeit with slightly slower con‐
vergence. This suggests that higher order filters can provide similar variance reduction
effects as with the first order filter introduced in the paper.

probing signal

integrator second order
low-pass filter

second order
high-pass filter+

X

(a) Block diagram of second order HLF‐SZO.

0 25 50 75 100 125 150 175 200
Function Queries

0.00

0.05

0.10

0.15

0.20

0.25

f(x
)-f

(x
*)

HF SZO (1st order filter)
HF SZO (2nd order filter)
80% CI
80% CI

(b) Convergence result on logistic regression problem.

Figure 4. Second order filter effects on HLF‐SZO algorithm convergence.

5 Discussion

The main strength of our approach is that we were able to reproduce the figures to be
nearly visually identical without any code provided by authors or instructions beyond
what was reported in the paper. This indicates that the results are easily reproducible
and that claims outlined in our scope of reproducibility are generally well supported.

For claim 1, even though the comparison to vanilla SZO is only made for a small logistic
regression problem, the dramatic difference in convergence speed shown in Figure 1
for vanilla SZO (105 iterations) vs. HLF‐SZO (400 iterations) is quite convincing. Along
with the difference in theoretical iteration complexity, we believe that claim 1 is well‐
supported.

For claim 2, it seems that Figure 5 & 6, along with the theoretical iteration complex‐
ity gap, support the idea that HLF‐SZO converges faster than residual SZO. Figure 3b
also suggests that HLF‐SZO can convergence much quicker than residual SZO for cer‐
tain problems. However, for the same neural network trained on a different dataset,

ReScience C 9.2 – Anonymous 2023 8

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

the performance gap may vanish, as seen in Figure 3a. Furthermore, in the ridge re‐
gression problem in Figure 2, even though HLF‐SZO has a faster rate of convergence
initially, residual SZO achieves a smaller optimality gap eventually. We believe that this
behavior can be alleviated by using a diminishing step size for both methods, so that
both methods can gradually approach arbitrarily small optimality gaps rather than flat‐
tening out. Overall, we believe that claim 2 is mostly supported but can depend heavily
on the specific optimization problem.

Finally, we believe that claim 3, namely that HLF‐SZO has comparable performance to
two‐point ZO, is not entirely clear. Again, as shown in Figure 2 for ridge regression,
two‐point ZO has an arbitrarily decreasing optimality gap whereas HLF‐SZO flattens out.
Moreover, on our neural network experiment, two‐point ZO converges to zero training
loss noticeably quicker (about 1000 iterations). Combined with the fact that two‐point
ZO has a strictly better theoretical iteration complexity compared to HLF‐SZO, we can‐
not say for certain that claim 3 is well supported.

Overall, we believe that the paper is technically sound and the claims are mostly sup‐
ported by various experiments, including our own additional simulations. Our exten‐
sion experiment seems to suggest that filtering the time dynamics of iterative optimiza‐
tion algorithms to improve convergence may be a more general idea than simply the
method proposed in the original paper, which is an exciting direction for future work.

5.1 What was easy
Since the problem sizes are relatively small (dimensions of vectors and matrices were
small) and the algorithms were fairly simple (only several lines long each), we were able
to reimplement them from scratch without much problems and run the code quickly.

5.2 What was difficult
One part of the reproduction process that was difficult involved recreating the graphs in
figures 2 and 4. This was because in the paper, the vertical scale showed some variant of
f(x)− f(x∗). The paper in all cases defined x∗ as some fixed point earlier, but in reality,
when creating the plots, x∗ was intended to be the optimal point of the optimization
pointwhichwas different from the paper’s specified point. This initially led to confusion
with algorithms that seemingly did not converge.

5.3 Communication with original authors
We have contacted the authors about details regarding the “manual search” procedure
for finding the various step sizes (as well as the smoothing radius parameter) that were
reported in the original paper. They explained that the step sizes were found by incre‐
mentally increasing the step size until the method diverged, thus giving each method
the best possible performance. They also claimed that the smoothing radius was se‐
lected so that the method did not have any numerical errors but otherwise did not have
much effect on the convergence results.

ReScience C 9.2 – Anonymous 2023 9

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

References

1. X. Chen, Y. Tang, and N. Li. “Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass
Filters.” In: Proceedings of the 39th International Conference on Machine Learning. Ed. by K. Chaudhuri, S.
Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato. Vol. 162. Proceedings of Machine Learning Research.
PMLR, July 2022, pp. 3603–3620.

2. A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko. “Stochastic online
optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case.”
In: Automation and Remote Control 78 (2017), pp. 224–234.

3. Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos. A New One-Point Residual-Feedback Oracle For Black-Box Learn-
ing and Control. 2020.

4. Y. Nesterov and V. G. Spokoiny. “Random Gradient-Free Minimization of Convex Functions.” In: Foundations of
Computational Mathematics 17 (2017), pp. 527–566.

5. Y. LeCun, C. Cortes, and C. Burges.Mnist handwritten digit database. AT&T Labs. 2010.
6. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et

al. “Pytorch: An imperative style, high-performance deep learning library.” In: Advances in neural information
processing systems 32 (2019).

A Additional Reproductions

(a) Original result

0 1000 2000 3000 4000 5000
Function Queries

2.0

1.5

1.0

0.5

0.0

lo
g(

f(x
)-f

(x
*)

)

Logistic Regression in Case 2a)
Residual
HLF-SZO
Two-Point

80% CI Residual
80% CI HLF
80% CI Two Point

(b) Our result

Figure 5. The convergence results of the various SZO methods on the logistic regression problem.

(a) Original result

0 1000 2000 3000 4000 5000
Function Queries

6

4

2

0

2

lo
g(

f(x
)-f

(x
*)

)

Beale Function in Case 2c)
Residual
HLF-SZO
Two-Point

80% CI Residual
80% CI HLF
80% CI Two Point

(b) Our result

Figure 6. The convergence results of various SZO methods on the Beale function.

ReScience C 9.2 – Anonymous 2023 10

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

B Convergence Proof

See the following table for math notation.

α, β = high‐pass filter parameter, low‐pass filter parameter

β̃ = 1− |1− β| = simplified notation of β

θ = 1− 4η2d2G2(1+α2)

β̃2r2(1−α2)2
= temporary parameter for notation simplicity

f(x),∇f(x) = objective function, gradient of objective function

d, T = dimension space for optimization variable, number of iterations

x∗, f(x∗) = optimal value, optimal objective function value

η = descent step size from current iterate to future iterate

L,G = Lipschitz constant of∇f(x), Lipschitz constant of f(x)

r, fr(x) = smoothing radius, smoothed version of f(x)

gk, zk = current search direction with momentum, past function evalua‐
tions

pk, wk = momentum term, updated iteration value using past momentum
terms

In the convex setting, let the low‐pass andhigh‐pass parameters fall in rangeα ∈ [0, 1), β ∈
(0, 2). For a fixed number of iterations T and minimizer x∗ ∈ Rd, choose the step size
such that the following holds

η ≤ (1− α)(1− |1− β|)2

20LdT 1/3

where d is the dimension of the input variable and L is the modulus of continuity of the
gradient of the objective function (i.e. the Lipschitz constant of∇f(x)). Given this step
size selected, you must pick a searching radius bounded by the following

4ηdG

(1− |1− β|)(1− α)
≤ r ≤ G

LT 1/3

whereG is themodulus of continuity of the objective function (i.e. the Lipschitz constant
of f(x)). Then, on average, x̄T = 1

T

∑T
k=1 xk achieves the following convergence

E[f(x̄T)]− f(x∗) ≤ 3(1− α)∥x1 − x∗∥2

4ηT
+

3G2

2LT 2/3
+O(

d

T
)

From above, we can say that on average, f(xT)will converge to optimal f(x∗) as T → ∞
as seen on the right hand side that goes towards zero. To show this convergence, we
will introduce the following notation that makes the problem more notation heavy but
easier to deal with the proof.

gk =
d

r
zkuk, zk = (1− β)zk−1 + f(xk + ruk)− f(xk−1 + ruk−1)

pk = αpk−1 + ηgk, xk+1 = xk − pk

ReScience C 9.2 – Anonymous 2023 11

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

Notice that this notation above simplifies to the notation below used throughout the
paper

zk = (1− β)zk−1 + f(xk + ruk)− f(xk−1 + ruk−1)

xk+1 = xk − η · d
r
zkuk + α(xk − xk−1).

Define vector wk = xk − αpk−1/(1 − α) that contains current iterate and past iterate
momentum terms such that the following can be expressed

wk+1 = xk+1 −
α

1− α
pk = xk − 1

1− α
pk

by plugging in definitions of wk, xk and rearranging terms. Moreover, this can further
be manipulated to express

wk+1 = xk − α

1− α
pk−1 −

η

1− α
gk = wk − η

1− α
gk

Here the definitions are reused to express the future weight vector as a combination of
the current weight vector and the scaled search direction vector. This is done by sub‐
stituting xk+1 formula, using wk definition, and pk definition. Using this last formula,
analyzing the L2 norm of this momentum vector and the optimal solution can give

∥wk+1 − x∗∥2 = ∥wk − x∗∥2 − 2η

1− α
⟨wk − x∗, gk⟩+

η2

(1− α)2
∥gk∥2

using expansion of L2 norm such that it is expressed in terms of current wk. What will
be shown is thatwk converges on average to the optimal solution x∗ . Remember thatwk

is essentially the current iterate with somemomentum terms. Notice that gk = ∇fr(xk)
since we are taking a difference in the objective function. Here fr(·)means the average
function value for all search directions in the given radius r. This is a smoothed version
of f(·). Given this, on average, the L2 distance satisfies the following

E[∥wk+1 − x∗∥2] = ∥wk − x∗∥2 − 2η

1− α
⟨wk − x∗,∇fr(xk)⟩+

η2

(1− α)2
E[∥gk∥2]

Using the definition of the weight vector and expressions for the iterates one can show
that ⟨wk−x∗,∇fr(xk)⟩ = ⟨xk−xk−1,∇fr(xk)⟩− α

(1−α)2 ⟨xk−xk−1,∇fr(xk)⟩. We can use
this in the expression above. First, however, using the fact that the function is convex, by
definition of convexity −⟨xk − xk−1,∇fr(xk)⟩ ≤ −(fr(xk)− fr(xk−1)). The same holds
for the optimal solution i.e. −⟨xk − x∗,∇fr(xk)⟩ ≤ −(fr(xk) − fr(x

∗)). Putting these
three inequalities together in the expectation of the L2 norm, we get the final expression

E[∥wk+1 − x∗∥2] ≤ E[∥wk − x∗∥2]− 2η

1− α
E[fr(xk)− fr(x

∗)]

− 2ηα

(1− α)2
E[fr(xk)− fr(xk−1)] +

η2

(1− α)2
E[∥gk∥2]

The next part of the proof that follows uses Lemma A.3 that generally states that

T∑
k=1

E[∥gk∥2] ≤
5d

θβ̃2

T∑
k=1

E[∥∇f(xk)∥2] +
10Tr2L2d2

θβ̃2
+

5d

2θβ̃
∥∇f(x1)∥2

for some constants β = 1 − |1 − β|, θ = 1 − 4η2d2G2(1+α2)

β̃2r2(1−α2)2
that depend on step size,

dimensionality, iterations, Lipschitz constant, and filter parameters. Thismeans that on
average, the past momentum terms are upper bounded by the gradient of the objective

ReScience C 9.2 – Anonymous 2023 12

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

function. This will be useful to get the right had side of the E[∥wk+1 − x∗∥2] above in
terms of objective function. From a calculus class, recall that a telescoping sum is of
the form

∑n−1
k=1(xk − xk+1) = x1 − x2 + x2 − x3 + x3... = x1 − xn. Notice that the series

w1, ..., wT for k = 1, ..., T is a telescoping sum so we can focus on the first and last terms
of wk. Now the new expression becomes the following

E[∥wT+1 − x∗∥2] ≤ ∥w1 − x∗∥2 − 2η

1− α

T∑
k=1

E[fr(xk)− fr(x
∗)]− 2ηα

(1− α)2
E[fr(xT)− fr(x1)]

+
10η2Ld

(1− α)2θβ̃2

T∑
k=1

E[f(xk)− f(x∗)] +
5η2Ld

(1− α)2θβ̃
(f(x1)− f(x∗))

+ (
2ηTr2L

1− α
+

2ηαr2L

(1− α)2
+

10Tη2r2L2d2

(1− α)2θβ̃2
)

since w2, ..., wT terms will cancel each other out. Using Lemma A.1, it was shown that
fr(x) ≥ f(x) for a convex function. Meaning that the smoothed version of the objective
function upper bounds the original objective function. Given this, we can bound the
previous equation so that everything is in terms of f(·)

E[∥wT+1 − x∗∥2] ≤ ∥w1 − x∗∥2 − 2η

1− α

T∑
k=1

E[f(xk)− f(x∗)]− 2ηα

(1− α)2
E[f(xT)− f(x1)]

+
10η2Ld

(1− α)2θβ̃2

T∑
k=1

E[f(xk)− f(x∗)] +
5η2Ld

(1− α)2θβ̃
(f(x1)− f(x∗))

+ (
2ηTr2L

1− α
+

2ηαr2L

(1− α)2
+

10Tη2r2L2d2

(1− α)2θβ̃2
)

Using the previous inequalityE[∥wT+1−x∗∥2] ≤ ∥w1−x∗∥2+... and the fact thatw1 = x1

(no momentum first iteration) and E[∥wT+1 − x∗∥2] ≥ 0 everything with expectations is
moved to the left hand side to express

(1− 5ηLd

(1− α)θβ̃2
)

T∑
k=1

E[f(xk)− f(x∗)] +
2ηα

(1− α)2
E[f(xT)− f(x1)]

≤ 5η2Ld

(1− α)2θβ̃
(f(x1)− f(x∗)) + (

2ηTr2L

1− α
+

2ηαr2L

(1− α)2
+

10Tη2r2L2d2

(1− α)2θβ̃2
)

given thatE[f(xT)−f(x∗)] ≤ E[f(xT)−f(x1)] since an iterate at T will be closer than the
first initialization. This equation above will be used in the following inequality. Using
inequality properties, it is known that adding any positive number to another number
makes it larger so it follows that

(1− 5ηLd

(1− α)θβ̃2
)
1

T

T∑
k=1

E[f(xk)− f(x∗)]

≤ (1− 5ηLd

(1− α)θβ̃2
)
1

T

T∑
k=1

E[f(xk)− f(x∗)] +
α

1− α

E[f(xT)− f(x∗)]

T

Putting these last two inequalities together results in the following conclusion thatE[f(xk)−
f(x∗)] is bounded by how good the initialization is, the filter parameters selected, the
Lipschitz constants, the smoothing radius selected, and the number of iterations.

ReScience C 9.2 – Anonymous 2023 13

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

(1− 5ηLd

(1− α)θβ̃2
)
1

T

T∑
k=1

E[f(xk)− f(x∗)]

≤ (1− α)∥x1 − x∗∥2

2ηT
+

5ηr2L2d2

(1− α)θβ̃2
+ r2L+

αr2L

(1− α)T

+ (
α

1− α
+

5ηLd

2(1− α)θβ̃
)
f(x1)− f(x∗)

T

Since η, r are selected based on the inequalities described in the beginning of this sec‐
tion, then the temporary parameters defined (θ, β̃) are bounded by constants such that
θ ≥ 1− 1

4
(1+α2)
(1+α)2 ≥ 3

4 and 1− 5ηLd

(1−α)θβ̃2
≥ 1− 1

3T 1/3 ≥ 2
3 . Given these bounds, the previous

equation simplifies to reach the final conclusion that

1

T

T∑
k=1

E[f(xk)− f(x∗)] ≤ 3(1− α)∥x1 − x∗∥2

4ηT
+

3G2

2LT 2/3
+O(

d

T
)

As seen above, on average, the sequence generated by HLF‐SZO converges to x∗ since
the right hand side has a decay factor 1

T so as T → ∞, then the right hand side goes
towards zero.

Lemma A.1 — Denote B := {x ∈ Rd : ∥x∥ ≤ 1}. For all k ≥ 1, we have

E[gk|Fk] = ∇fr(xk),

where fr : Rd → R is defined by fr(x) := Ey∼Unif(Bd)[f(x+ry)]. Moreover, for all x ∈ Rd,

|fr(x)− f(x)| ≤ 1

2
Lr2, ∥∇fr(x)−∇f(x)∥ ≤ Lr,

and if f is convex, then fr(x) ≥ f(x).

Lemma A.2 —We have

T∑
k=1

E[|zk|2] ≤
5r2

β̃2d

T−1∑
k=1

E[∥∇f(xk)∥2] +
2G2

β̃2

T−1∑
k=1

E[∥pk∥2] +
10Tr4L2

β̃
+

5r2

2β̃d
∥∇f(x1)∥2.

Lemma A.3 — Suppose the quantity

θ := 1− 4η2d2G2(1 + α2)

β̃2r2(1− α2)2

is positive. Then we have

T∑
k=1

E[∥gk∥2] ≤
5d

θβ̃2

T∑
k=1

E[∥∇f(xk)∥2] +
10Tr2L2d2

θβ̃2
+

5d

2θβ̃
∥∇f(x1)∥2,

T∑
k=1

E[∥pk∥2] ≤
2η2(1 + α2)

(1− α2)2

T∑
k=1

E[∥gk∥2].

ReScience C 9.2 – Anonymous 2023 14

https://rescience.github.io/

[Re] Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters UNDER REVIEW

C Second-Order Filter Derivation

We follow a similar derivation strategy as in the original paper. The second order HLF‐
SZOmethod is derived by squaring first order filter transfer functions. For the highpass
filter, we have

L(z) =
s2

(s+ ωH)2
L(f),

leading to L(z)(s2 + 2ωHs+ ω2
H) = s2L(f) so that z̈ + 2ωH ż + ω2

Hz = f̈ . We can approx‐
imate second derivatives as z̈ = zk+zk−2−2zk−1

δ2 so that this becomes

zk + zk−2 − 2zk−1

δ2
+ 2ωH

zk − zk−1

δ
+ ω2

Hzk−2 =
fk + fk−2 − 2fk−1

δ2
,

which after simplifying becomes

zk =
1

1 + 2ωHδ
((2 + 2ωHδ)zk−1 − (1 + δ2ω2

H)zk−2 + fk + fk−2 − 2fk−1)).

After making the substitution β = δωH , and fully writing the expressions fk, we have
the second order highpass filter update rule given by

zk =
1

1 + 2β
((2+2β)zk−1−(1+β2)zk−2+f(xk+ruk)+f(xk−2+ruk−2)−2f(xk−1+ruk−1)),

and xk+1 = xk − η d
r zkuk as in the first order update rule.

For the second order lowpass filter, we similarly square the transfer function to get

L(z) =
ω2
L

(s+ ωL)2
L(f),

which after applying the same discrete time second derivative approximations simplifies
to

yk + yk+2 − 2yk+1

δ2
+ 2ωL

yk+1 − yk
δ

+ ω2
Lyk = ω2

Lg.

Rearranging gives

yk+2 = (2− 2δωL)yk+1 + (2δωL − ω2
Lδ

2 − 1)yk + δ2ω2
Lg.

We also need to perform one other modification to the figure in the paper, which is to
replace the single integratorwith a double integratorwhose transfer function is 1

s2 . After
doing this, we get ẍ = −y. Therefore, we may apply the discrete time second derivative
approximation formula to replace all the y terms in the above equation, and also let
α = 1− δωL and η = δ2ωL to get

2xk+1 − xk − xk+2 = 2α(2xk − xk−1 − xk+1)− α2(2xk−1 − xk−2 − xk) + η2g,

which after rearrangement becomes our update rule given by

xk+2 = (2 + 2α)xk+1 + (−1− 4α− α2)xk + (2α+ 2α2)xk−1 − α2xk−2 − η2g.

Note that this can also be rewritten as

xk+2 = xk+1 + (1 + 2α)(xk+1 − xk) + (−2α− α2)(xk − xk−1) + α2(xk−1 − xk−2)− η2g,

which bares a close resemblance to the first order lowpass filter update rule. During the
actual implementation, we may decrement each of the indices by one so that xk+1 is
being updated.

ReScience C 9.2 – Anonymous 2023 15

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup and code
	Computational requirements

	Results
	Results reproducing original paper
	Result 1 (Reproducing Figure 2)
	Result 2 (Reproducing Figure 4)
	Result 3 (Reproducing Theorem 4.2)

	Results beyond original paper
	Additional Result 1 (Zeroth Order Neural Network Training)
	Additional Result 2 (Higher Order Filters)

	Discussion
	What was easy
	What was difficult
	Communication with original authors

	Additional Reproductions
	Convergence Proof
	Lemma A.1
	Lemma A.2
	Lemma A.3

	Second-Order Filter Derivation

